1. In \mathbb{R}^2, N is the usual natural basis $\begin{pmatrix} 1 \\ 0 \\ 1 \\ 1 \end{pmatrix}$; let B be the basis $\begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}$. T is a linear transformation on \mathbb{R}^2 defined by its action on N: $T\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$ and $T\begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \end{pmatrix}$. $T^2 = T \circ T$.

a) Find the matrix (often denoted $[T^2]_N$) that represents T^2 with respect to the basis N.

b) Find the matrix (often denoted $[T^2]_B$) that represents T^2 with respect to the basis B.

c) Find a basis C and a diagonal matrix D such that the matrix that represents T with respect to C (i.e., $c(T|C)$) is D. (Note that this question refers to T, not T^2.)

2. Let \mathcal{V} be a vector space and let $\{v_1, v_2, \ldots, v_k\}$ be a linearly independent set of vectors in \mathcal{V}. If T is a non-singular linear transformation on \mathcal{V}, show that $\{Tv_1, Tv_2, \ldots, Tv_k\}$ is also a linearly independent set. (Clearly indicate the step in your proof where you use the hypothesis that T is non-singular.)

3. Let \mathcal{P}_n be the vector space over \mathbb{R} of all polynomials of degree n or less ($n \geq 3$) with real coefficients. Let f and $g \in \mathcal{P}_n$ be defined as $f(x) = x + 1$ and $g(x) = x - 1$.

a) Prove: f and g are linearly independent in \mathcal{P}_n.

b) Let S be the subspace of \mathcal{P}_n spanned by f and g. Define a linear transformation T on \mathcal{P}_n such that the kernel (or null space) of T is S.

4. Let $A = \begin{pmatrix} 1 & -2 & 3 & 0 \\ -2 & 4 & -1 & 1 \\ 3 & -6 & 4 & 1 \end{pmatrix}$.

a) Find a basis for the row space of A.

b) Find a basis for the column space of A.

c) Find a basis for the null space of A.

d) What is the dimension of the null space of A^T?

5. Let $A = \begin{pmatrix} 6 & 4 & 10 \\ 8 & 0 & 5 \\ 0 & 0 & 3 \\ 9 & 6 & 7 \end{pmatrix}$, but note that two entries of the last column are missing. The characteristic polynomial of A is known to be $p_A(t) = t^4 - 12t^3 - 5t^2 + 96t$. What are the missing entries?

6. Let \mathcal{C}^n be the vector space of n-tuples over C, the field of complex numbers, and let $\langle \cdot, \cdot \rangle$ be the usual inner product on \mathcal{C}^n. Let $\|\cdot\|$ be the vector norm induced by this inner product. I.e., $\|v\| = \langle v, v \rangle^{1/2}$. Let U be an $n \times n$ unitary matrix. Prove that for every $v \in \mathcal{C}^n$, $\|Uv\| = \|v\|$.

7. Let A, an $n \times n$ matrix with entries from C, the field of complex numbers, have the property that $A^3 = I_n$, where I_n is the $n \times n$ identity matrix.

a) What are the possible eigenvalues of A?

b) Prove: A is diagonalizable.

c) Suppose further that $n = 3$ and all entries of A are real numbers. List all possible non-similar Jordan Canonical Forms for A.