1. Let V and W be vector spaces and $T : V \rightarrow W$ be a linear transformation.
 (a) If V is finite dimensional, then show that the null space $N(T)$ and the range $R(T)$ are also finite dimensional, and $\dim(N(T)) + \dim(R(T)) = \dim(V)$.
 (b) If there exists a linear transformation $T : V \rightarrow W$ such that $N(T)$ and $R(T)$ are both finite dimensional, then prove that V is finite dimensional.

2. Suppose A is a 4×4 matrix with characteristic polynomial $p(x) = (x - 1)(x + 2)^2(x - 3)$.
 (a) Show that A is invertible. Find the characteristic polynomial of A^{-1}.
 (b) Find the determinant and trace of A and A^{-1}.
 (c) Express A^{-1} as a polynomial in A. Explain your answer.

3. Let P_n denote the vector space of real polynomials of degree at most n. Define the map $T : P_n \rightarrow P_n$ by
 $$T(p)(x) = \frac{d(xp)}{dx}, \quad p \in P_n.$$
 (a) Show that T is linear and prove that T is invertible.
 (b) Find an ordered basis β for P_n consisting of eigenvectors of T and compute the matrix representation $[T]_\beta$.

4. Suppose V is an inner product space, and let $\mathbf{w} \in V$ be a given unit vector. Define a linear transformation $T : V \rightarrow V$ by $T(\mathbf{v}) = \langle \mathbf{v}, \mathbf{w} \rangle \mathbf{w}$, $\forall \mathbf{v} \in V$.
 (a) Find explicitly the adjoint T^* of T and show that $T^* = T$.
 (b) Prove that T is an orthogonal projection by showing that (i) $T^2 = T$ and (ii) $R(T)$ and $N(T)$ are orthogonal complements of each other.

5. Let A be a real, $n \times n$, orthogonal matrix, i.e., $A^TA = AA^T = I$.
 (a) If λ is a (complex) eigenvalue of A, then show that (i) $|\lambda| = 1$ and (ii) $\overline{\lambda}$ is also an eigenvalue.
 (b) If n is odd, then prove that A has at least one real eigenvalue.
 (c) When n is even, give an example of the matrix A which has no real eigenvalues.
6. (a) Suppose the characteristic polynomial of a matrix A is given by $p(x) = x^2(x - 1)^2$. List all possible inequivalent (not similar) Jordan canonical forms J such that $A = PJP^{-1}$.

(b) Given the matrix

$$A = \begin{pmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \end{pmatrix}$$

Determine the Jordan canonical form J and the matrix P such that $A = PJP^{-1}$.