CONCRETE DETAILS

1. GENERAL CONCRETE

 a. Mix Design: The mix design shall be submitted with the contract documents and shall be placed in accordance with ASTM C109 and C110. The mix design shall be adjusted as necessary to meet the requirements of ACI 318.

 b. Workability: The concrete shall be workable and compacted in accordance with ASTM C94. The contractor shall provide evidence of the concrete's workability, such as slump or坍落度 tests.

 c. Curing: The concrete shall be cured in accordance with ASTM C1028. The contractor shall provide evidence of the curing process, such as photographs or curing materials.

 d. Expansion Joints: Expansion joints shall be placed at specified locations. The contractor shall provide evidence of the joint placement, such as drawings or photographs.

2. SOIL PRESSES AND LIVE LOADS

 a. Soil Pressures: The soil pressures shall be calculated in accordance with AASHTO-LRFD and the results shall be submitted with the contract documents.

 b. Live Loads: The live loads shall be calculated in accordance with AASHTO-LRFD and the results shall be submitted with the contract documents.

3. PLACING AND COMPACTING

 a. Placing: The concrete shall be placed without visible cracks or voids. The contractor shall provide evidence of the placing process, such as photographs or videos.

 b. Compacting: The concrete shall be compacted in accordance with ASTM C310. The contractor shall provide evidence of the compacting process, such as photographs or videos.

4. JOINTS AND EXPANSION JOINTS

 a. Joints: Joints shall be placed at specified locations in accordance with the contract documents. The contractor shall provide evidence of the joint placement, such as drawings or photographs.

 b. Expansion Joints: Expansion joints shall be placed at specified locations in accordance with the contract documents. The contractor shall provide evidence of the joint placement, such as drawings or photographs.

5. CEMENT AND AGGREGATES

 a. Cements: The cement shall meet the requirements of ASTM C150. The contractor shall provide evidence of the cement's quality, such as certificates of analysis.

 b. Aggregates: The aggregates shall meet the requirements of ASTM C33. The contractor shall provide evidence of the aggregate's quality, such as certificates of analysis.

6. REINFORCING STEEL

 a. Steel: The reinforcing steel shall meet the requirements of ASTM A615. The contractor shall provide evidence of the steel's quality, such as certificates of analysis.

 b. Welding: The reinforcing steel shall be welded in accordance with AWS D1.1. The contractor shall provide evidence of the welding process, such as photographs or videos.

7. PLACING AND COMPACTING

 a. Placing: The concrete shall be placed without visible cracks or voids. The contractor shall provide evidence of the placing process, such as photographs or videos.

 b. Compacting: The concrete shall be compacted in accordance with ASTM C310. The contractor shall provide evidence of the compacting process, such as photographs or videos.

8. JOINTS AND EXPANSION JOINTS

 a. Joints: Joints shall be placed at specified locations in accordance with the contract documents. The contractor shall provide evidence of the joint placement, such as drawings or photographs.

 b. Expansion Joints: Expansion joints shall be placed at specified locations in accordance with the contract documents. The contractor shall provide evidence of the joint placement, such as drawings or photographs.

9. CEMENT AND AGGREGATES

 a. Cements: The cement shall meet the requirements of ASTM C150. The contractor shall provide evidence of the cement's quality, such as certificates of analysis.

 b. Aggregates: The aggregates shall meet the requirements of ASTM C33. The contractor shall provide evidence of the aggregate's quality, such as certificates of analysis.

10. REINFORCING STEEL

 a. Steel: The reinforcing steel shall meet the requirements of ASTM A615. The contractor shall provide evidence of the steel's quality, such as certificates of analysis.

 b. Welding: The reinforcing steel shall be welded in accordance with AWS D1.1. The contractor shall provide evidence of the welding process, such as photographs or videos.

11. PLACING AND COMPACTING

 a. Placing: The concrete shall be placed without visible cracks or voids. The contractor shall provide evidence of the placing process, such as photographs or videos.

 b. Compacting: The concrete shall be compacted in accordance with ASTM C310. The contractor shall provide evidence of the compacting process, such as photographs or videos.

12. JOINTS AND EXPANSION JOINTS

 a. Joints: Joints shall be placed at specified locations in accordance with the contract documents. The contractor shall provide evidence of the joint placement, such as drawings or photographs.

 b. Expansion Joints: Expansion joints shall be placed at specified locations in accordance with the contract documents. The contractor shall provide evidence of the joint placement, such as drawings or photographs.
POST-INSTALLED ANCHORS/REINFORCING STEEL SPECIAL INSPECTIONS

<table>
<thead>
<tr>
<th>Item</th>
<th>Method</th>
<th>Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>TOOLS</td>
<td>TENSION TEST</td>
</tr>
<tr>
<td>1.0</td>
<td>TOOLS</td>
<td>MASONRY IMPACT TEST</td>
</tr>
</tbody>
</table>

STRUCTURAL CONCRETE TESTING

<table>
<thead>
<tr>
<th>Item</th>
<th>Method</th>
<th>Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>TOOLS</td>
<td>COMPRESSIVE STRENGTH</td>
</tr>
<tr>
<td>1.0</td>
<td>TOOLS</td>
<td>MODULUS OF ELASTICITY</td>
</tr>
</tbody>
</table>

SOILS SPECIAL INSPECTIONS

<table>
<thead>
<tr>
<th>Item</th>
<th>Method</th>
<th>Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>TOOLS</td>
<td>VIBRATORY INFLUENCE TEST</td>
</tr>
<tr>
<td>1.0</td>
<td>TOOLS</td>
<td>PENETRATION TEST</td>
</tr>
</tbody>
</table>

STRUCTURAL CONCRETE SPECIAL INSPECTIONS

<table>
<thead>
<tr>
<th>Item</th>
<th>Method</th>
<th>Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>TOOLS</td>
<td>COMPRESSIVE STRENGTH</td>
</tr>
<tr>
<td>1.0</td>
<td>TOOLS</td>
<td>MODULUS OF ELASTICITY</td>
</tr>
</tbody>
</table>

QUALITY ASSURANCE GENERAL NOTES

Statement of Structural Special Inspections and Testing

<table>
<thead>
<tr>
<th>Item</th>
<th>Method</th>
<th>Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>TOOLS</td>
<td>VIBRATORY INFLUENCE TEST</td>
</tr>
<tr>
<td>1.0</td>
<td>TOOLS</td>
<td>PENETRATION TEST</td>
</tr>
</tbody>
</table>

POST-INSTALLED ANCHORS/REINFORCING STEEL TESTING

<table>
<thead>
<tr>
<th>Item</th>
<th>Method</th>
<th>Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>TOOLS</td>
<td>TENSION TEST</td>
</tr>
<tr>
<td>1.0</td>
<td>TOOLS</td>
<td>MASONRY IMPACT TEST</td>
</tr>
</tbody>
</table>

STRUCTURAL CONCRETE SPECIAL INSPECTIONS

<table>
<thead>
<tr>
<th>Item</th>
<th>Method</th>
<th>Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>TOOLS</td>
<td>COMPRESSIVE STRENGTH</td>
</tr>
<tr>
<td>1.0</td>
<td>TOOLS</td>
<td>MODULUS OF ELASTICITY</td>
</tr>
</tbody>
</table>

SOILS SPECIAL INSPECTIONS

<table>
<thead>
<tr>
<th>Item</th>
<th>Method</th>
<th>Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>TOOLS</td>
<td>VIBRATORY INFLUENCE TEST</td>
</tr>
<tr>
<td>1.0</td>
<td>TOOLS</td>
<td>PENETRATION TEST</td>
</tr>
</tbody>
</table>

STRUCTURAL CONCRETE SPECIAL INSPECTIONS

<table>
<thead>
<tr>
<th>Item</th>
<th>Method</th>
<th>Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>TOOLS</td>
<td>COMPRESSIVE STRENGTH</td>
</tr>
<tr>
<td>1.0</td>
<td>TOOLS</td>
<td>MODULUS OF ELASTICITY</td>
</tr>
</tbody>
</table>
Reinforcing Development, Placement, and Bend Info

Notes:
1. 0.25" x 0.25" stirrups inside the bunds shall be bent to at least 90° hook, 6d.
2. #3-#5 and #6 #8 stirrups shall be lap spliced at least 12d.
3. Lap splice lengths shall be specified on the drawings. When lap splice lengths are not specified, use the lap splice length schedule.

Typical Construction:
- Bars shall be bent to 90° hook, 6d.
- All bars shall be lap spliced with at least 12d lap splice length.
- Bars shall be bent to at least 90° hook, 6d.

Typical Rebar Details:
- #3-#5 rebar shall be bent to at least 90° hook, 6d.
- All rebar shall be epoxy coated.

Lap Splice and Development Length Schedule (Inches)

<table>
<thead>
<tr>
<th>Bar Size</th>
<th>Lap Splice Length</th>
<th>Development Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>#3-#5</td>
<td>6d</td>
<td>12d</td>
</tr>
<tr>
<td>#6-#8</td>
<td>8d</td>
<td>24d</td>
</tr>
<tr>
<td>#9-#11</td>
<td>10d</td>
<td>30d</td>
</tr>
<tr>
<td>#12-#14</td>
<td>12d</td>
<td>36d</td>
</tr>
<tr>
<td>#16-#18</td>
<td>14d</td>
<td>42d</td>
</tr>
<tr>
<td>#20-#22</td>
<td>16d</td>
<td>48d</td>
</tr>
<tr>
<td>#24-#26</td>
<td>18d</td>
<td>54d</td>
</tr>
<tr>
<td>#28-#30</td>
<td>20d</td>
<td>60d</td>
</tr>
</tbody>
</table>

General Notes:
1. Lap splice lengths shall be determined by the specified concrete cover.
2. Bars shall be bent to at least 90° hook, 6d.
3. Bars shall be lap spliced with at least 12d lap splice length.
4. Bars shall be bent to at least 90° hook, 6d.

Notes:
- Bars shall be bent to at least 90° hook, 6d.
- All bars shall be epoxy coated.
- Bars shall be bent to at least 90° hook, 6d.

Concrete Details:
- Concrete shall be placed in random lifts, except where indicated.
- Concrete shall be placed in random lifts, except where indicated.
- Concrete shall be placed in random lifts, except where indicated.
- Concrete shall be placed in random lifts, except where indicated.

Structural Details:
- Structural details shall be determined by the structural engineer.
- Structural details shall be determined by the structural engineer.
- Structural details shall be determined by the structural engineer.
- Structural details shall be determined by the structural engineer.

Mechanical/Plumbing:
- Mechanical/Plumbing details shall be determined by the mechanical/ plumbing engineer.
- Mechanical/Plumbing details shall be determined by the mechanical/ plumbing engineer.
- Mechanical/Plumbing details shall be determined by the mechanical/ plumbing engineer.
- Mechanical/Plumbing details shall be determined by the mechanical/ plumbing engineer.

Electrical Details:
- Electrical details shall be determined by the electrical engineer.
- Electrical details shall be determined by the electrical engineer.
- Electrical details shall be determined by the electrical engineer.
- Electrical details shall be determined by the electrical engineer.

Building Performance Details:
- Building performance details shall be determined by the building performance engineer.
- Building performance details shall be determined by the building performance engineer.
- Building performance details shall be determined by the building performance engineer.
- Building performance details shall be determined by the building performance engineer.

Geotechnical Details:
- Geotechnical details shall be determined by the geotechnical engineer.
- Geotechnical details shall be determined by the geotechnical engineer.
- Geotechnical details shall be determined by the geotechnical engineer.
- Geotechnical details shall be determined by the geotechnical engineer.

Civil Details:
- Civil details shall be determined by the civil engineer.
- Civil details shall be determined by the civil engineer.
- Civil details shall be determined by the civil engineer.
- Civil details shall be determined by the civil engineer.
SHEAR WALL MAT SUMP REINF

PIER CAP AT SHEAR WALL

PIER DOWELS

TYP STEPPED OR BM WALL AT PIER

TYP DRILLED PIER SCHEDULE

TYP DOWELS AT PIER WALL

TYP DOWELS AT PIER W/ SUPPORT

TYP DOWELS AT MAT

PD-3A-85 TYP REINF ON PIER

PD-3C-85 TYP REINF ON PIER

PD-2T-85 TYP REINF ON PIER

PD-1T-85 TYP REINF ON PIER

LTS

LTS + 2'-0"

LTS + H

T/WALL S/2 MAX, TYP

3' - 7 7/8"

5'-0" TO CSJ

MINIMUM PENETRATION INTO BEARING MATERIAL. SEE PLAN.

MINIMUM LENGTH = 24'-0"

3" CLR

3" CLR

3 1/2"

REINFORCEMENT

VERT BAR

INDICATES DP

TYP DRILLED PIER SCHEDULE

4" CLR, TYP

4" CLR

4" CLR

VERT BARS

INDICATES PIER

INDICATES CAP

TYP DRILLED PIER SCHEDULE

REMARKS VERTICAL TIES

TIED TO TIE

4" HORZ LEG

PIER TIE

TYPICAL ALIGNMENT BAR

4" ~ 6" SPACED AROUND VERTICAL REINF, EQUALLY

INDICATES ALIGNMENT DEVICE

ENGINEER DETERMINED BY THE GEOTECHNICAL REPORT FOR #3 ALIGNMENT BARS OR OTHER PROTECTION MARCH COLUMN REINFORCING PROVIDE #4 DWL TIES AT 1/4 POINTS AROUND APPROVED ALIGNMENT DEVICES

#3 ALIGNMENT BARS OR OTHER PROTECTION MARCH COLUMN REINFORCING PROVIDE #4 DWL TIES AT 1/4 POINTS AROUND APPROVED ALIGNMENT DEVICES

LTS 2'-0"

LTS

LTS 4'-0"

LTS + 2'-0"

LTS

LTS + H

LTS

LTS + 2'-0"

LTS + H

LTS

LTS + H
BEAM REINF TO EXTEND SEE ELEVATION FOR FND WALL REINF SEE FOR ADD 005
NORTH CORE COUNTERFORT AT 17 003 BP W/ STD HOLE PL WASHER 1/2x2x2
NO SCALE

SECTION A 1'-2"
6 3/16 (5/16) (5/16) TYP ANCHOR BOLTS IN PL 1 1/2 W/ (8) 3/4"Ø TYP (2) SIDES

(4) #7 T&B W/ (4) LEGS AT 6" 0.C. #4 CLOSED STIRRUPS
NOTCH PL OVER WELD 15

1 1/2 W/ (10) 3/4"Ø REQD BTWN PLATES PL WASHERS 1/2x2x2

AT COL WELD WASHER WELD NOT REQD BOLTS IN 1 5/16" HOLES W/ STD HOLE AT BASE OF WALL TYP

STAIR EXTERIOR SEE PLAN

TIES AT 3" OC AT TOP OF PILASTER TIES AT 3" OC AT TOP OF WALL REINF HORIZ REINF TO FAR CONT HORIZ WALL

CORNER REINF PER 9/2-311 GRADE BEAM BELOW, PROVIDE #6 X (8) #10 VERT SETS (8) #10 VERT TIES W/ (2) TIES AT 3"

#4@12" TIES W/ (2) TIES AT 3"

#5@9" VERT TYP, (6) #5@4" NOTCH PLATE OVER WELD #5@12" HORIZ AT THRESHOLD

#5@10" VERT

OMIT TYP WALL VERT BARS #5@8" HORIZ EF, INSIDE 4" VOID FORM (2) ADDNL #10 BARS T&B 4" VOID FORM OUTSIDE LAYER AS SHOWN

#10@8" HORIZ EF, INSIDE #5@12" VERT EF, INSIDE

#10@8" HORIZ EF, INSIDE #5@12" OC EW, EF #5@18" OC EW, EF #5@12" OC EW #5@12" OC EW 2' - 3"

#6 DOWELS AT 12" EF 2'-6" #5@10" VERT EF, INSIDE #5@12" VERT EF, INSIDE

3" MAX #5@12" VERT EF, INSIDE

2' - 1 0"

3' - 0"

3" CLR, TYP WALL REINF 3" CLR

#5@12" OC EW

2'-1 0"

3' - 0"

2' - 3"

6" 4 1/2" 4'-6"

SHOWN 4" VOID FORM 4" VOID FORM

OUTSIDE LAYER AS SHOWN OUTSIDE LAYER AS SHOWN

#10@8" HORIZ EF, INSIDE #5@12" VERT EF, INSIDE

#10@8" HORIZ EF, INSIDE #5@12" OC EW, EF #5@12" OC EW #5@12" OC EW

FEATURES DRAWING NUMBER

PAGE INDEX

DRAWN BY: REVIEWED BY: APPROVED BY:
BP
TYP SOG ISOLATED EQUIP PAD
SOG AT T/WALL

NOTES:
1. PREPARED/COMPACTED SUBGRADE, SEE EARTHWORK SPEC FOR REQUIREMENTS.
2. PROVIDE ADDITIONAL CONTROL JOINTS AT ABRUPT CHANGES IN THICKNESS AND LOCATIONS PRONE TO CRACKING.
3. PROVIDE TOOLS FOR SUMMARY OF CONSTRUCTION CONCEPTS ONLY. SEE PLAN FOR ACTUAL CEMENT AND ARRANGEMENT.

BP
TYP SOG - SECOND LEVEL

NOTES:
1. SUBSURFACE ISOLATION JOINTS (COLUMNS, ETC.) AT Bases of SHEETED JOINTS
2. PROVIDE TOOLS FOR SUMMARY OF CONSTRUCTION CONCEPTS ONLY. SEE PLAN FOR ACTUAL CEMENT AND ARRANGEMENT.

BP
TYP SOG KEY PLAN

NOTES:
1. PREPARED/COMPACTED SUBGRADE, SEE EARTHWORK SPEC FOR REQUIREMENTS.
2. PROVIDE ADDITIONAL CONTROL JOINTS AT ABRUPT CHANGES IN THICKNESS AND LOCATIONS PRONE TO CRACKING.

BP
TYP SOG ISOLATION JOINT

NOTES:
1. PROVIDE TOOLS FOR SUMMARY OF CONSTRUCTION CONCEPTS ONLY. SEE PLAN FOR ACTUAL CEMENT AND ARRANGEMENT.
2. PROVIDE TOOLS FOR SUMMARY OF CONSTRUCTION CONCEPTS ONLY. SEE PLAN FOR ACTUAL CEMENT AND ARRANGEMENT.

BP
TYP TRIM REINF

NOTES:
1. PROVIDE TOOLS FOR SUMMARY OF CONSTRUCTION CONCEPTS ONLY. SEE PLAN FOR ACTUAL CEMENT AND ARRANGEMENT.
2. PROVIDE TOOLS FOR SUMMARY OF CONSTRUCTION CONCEPTS ONLY. SEE PLAN FOR ACTUAL CEMENT AND ARRANGEMENT.

BP
TYP SOG JOINTS

NOTES:
1. PROVIDE TOOLS FOR SUMMARY OF CONSTRUCTION CONCEPTS ONLY. SEE PLAN FOR ACTUAL CEMENT AND ARRANGEMENT.
2. PROVIDE TOOLS FOR SUMMARY OF CONSTRUCTION CONCEPTS ONLY. SEE PLAN FOR ACTUAL CEMENT AND ARRANGEMENT.

BP
TYP SOG EQUIP PAD

NOTES:
1. PROVIDE TOOLS FOR SUMMARY OF CONSTRUCTION CONCEPTS ONLY. SEE PLAN FOR ACTUAL CEMENT AND ARRANGEMENT.
2. PROVIDE TOOLS FOR SUMMARY OF CONSTRUCTION CONCEPTS ONLY. SEE PLAN FOR ACTUAL CEMENT AND ARRANGEMENT.

BP
TYP SOG BELOW METAL STAIR

NOTES:
1. PROVIDE TOOLS FOR SUMMARY OF CONSTRUCTION CONCEPTS ONLY. SEE PLAN FOR ACTUAL CEMENT AND ARRANGEMENT.
2. PROVIDE TOOLS FOR SUMMARY OF CONSTRUCTION CONCEPTS ONLY. SEE PLAN FOR ACTUAL CEMENT AND ARRANGEMENT.

BP
TYP SOG EXT THRESHOLD

NOTES:
1. PROVIDE TOOLS FOR SUMMARY OF CONSTRUCTION CONCEPTS ONLY. SEE PLAN FOR ACTUAL CEMENT AND ARRANGEMENT.
2. PROVIDE TOOLS FOR SUMMARY OF CONSTRUCTION CONCEPTS ONLY. SEE PLAN FOR ACTUAL CEMENT AND ARRANGEMENT.

BP
TYP SOG - ISOLATED EQUIPMENT PAD

NOTES:
1. PROVIDE TOOLS FOR SUMMARY OF CONSTRUCTION CONCEPTS ONLY. SEE PLAN FOR ACTUAL CEMENT AND ARRANGEMENT.
2. PROVIDE TOOLS FOR SUMMARY OF CONSTRUCTION CONCEPTS ONLY. SEE PLAN FOR ACTUAL CEMENT AND ARRANGEMENT.
GATE POST BASE

POST INSTALLED BRICK SUPPORT

BRICK SUPPORT AT CONCRETE

PENTHOUSE DRAG CONN

END OF WALL EMBED

NE WINDOW SUPPORT

GATE POST BASE

ROUND HSS BASE PL

POST INSTALLED BRICK SUPPORT

POST INSTALLED BRICK SUPPORT AT CONCRETE

BRICK SUPPORT AT CONCRETE

PENTHOUSE DRAG CONN

END OF WALL EMBED

NE WINDOW SUPPORT

GATE POST BASE

ROUND HSS BASE PL

POST INSTALLED BRICK SUPPORT

POST INSTALLED BRICK SUPPORT AT CONCRETE

BRICK SUPPORT AT CONCRETE
For skewed beam connections see W27 - W44.

Use G = 6" for skew angles ≤ 55°.

Note: The geometry shown is the basis for single angle connections.

Required only where no rebar reaction in plate connections.

Material grades of 20 for single angle schedule.

Note: For single plate connections, only.

No reinforcing required for single plate connections.

Notes:
1. Web is 5 1/4". (No. of bolts 4 32 6 5 7 8 9 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 6 8 9 43 & up)
2. Use cope 'C' exceeds 'G' required only where no beam to HSS col. (Beam sloping down 4 6 6 66 7 7/16)
3. Beam to plate connection, add web extension plate.
4. For single plate connections, only.

Bolts 5/8" and 7/8" are indicated with a circle.

S-500A
1. GREATER OF 1.5x WEB THICKNESS OR 1 1/2"

NOTE 2

VESTIBULE BEAM TO POST CONN

18

NOTE 3

NOTE 1

NOTE 4

NOTE 5

NOTE 6

NOTE 7

NOTE 8

NOTE 9

NOTE 10

NOTE 11

NOTE 12

NOTE 13

NOTE 14

NOTE 15

NOTE 16

NOTE 17

NOTE 18
1. SEE MECH/ELEC DRAWINGS FOR SIZE, THICKNESS, AND LOCATIONS.
2. DECK RAIL MOUNTING DETAIL SHALL BE CORRECTLY APPLIED WHERE TEAR-OUT EVENTS MAY OCCUR.

STUD RAIL OPTION

- **Typical**
 - Stud Rail @ 1 1/2" min
 - 4" thru 6"
 - Greater than 6"

- Post-installed rebar option

- **Typical**
 - Screw @ 12"
 - 4" thru 6" (2) rows of #10

- **Post-installed rebar option**
 - Screw @ 12"
 - 2" max
 - (2) rows of #10

MECH CURB

- **C Small mechanical equipment - deck parallel**
- **B Curb parallel to support**
- **A Curb perpendicular to support**

- **1.** Provide #4 continuous w/ 1/2" spacing.
- **3.** Consider rebar as supplemental reinforcement to support.
- **4.** Provide rebar @ 12" on center.
- **5.** Adjacent support member extend double deck 1'-0" min each.

DECK TRANSITION

- **Notes**
 - 1. Provide #10 continuous w/ 1/2" spacing.
 - 2. Consider rebar as supplemental reinforcement to support.
 - 3. Provide rebar @ 12" on center.
 - 4. Provide rebar @ 12" on center.

METAL DECK SLAB SCHEDULE

- **Notes**
 - 1. Composite metal deck specified dimensions by gulley.
 - 2. Composite metal deck may be supplied to improve drainage at gully locations.
 - 3. Aphit depth of metal deck to be a minimum of 8".

DECK CONNECTIONS

- **Notes**
 - 1. For composite metal deck, reinforcement to be provided.
 - 2. For composite metal deck, reinforcement to be provided.
 - 3. For composite metal deck, reinforcement to be provided.
 - 4. For composite metal deck, reinforcement to be provided.

DECK MATERIALS

- **Notes**
 - 1. Use 4" stud rail continuous for 8" thru 6" deck.
 - 2. Use 4" stud rail continuous for 6" deck.

TYP金属 DECK DETAILS
TYP SLAB STEP - DECK PARALLEL

- HDAS @ 12"
- #4xCONT, TYP
- SUPPORT WET #4xCONT
- 1/2"Ø DAS @ 12"

TYP INT SLAB EDGE

- AT DECK PERPENDICULAR
- SLAB SCHEDULE, SEE METAL DECK LTS SCHED
- METAL DECK SLAB #4xBTWN BEAMS
- L4x4x5/16xCONT, 1" CLR, S-530
- #4x5.4x4'-0 ES OF 10
- 3'-0" @12"

TYP SHEAR STUD LAYOUT

- STUDS MAY BE EITHER SIDE OF STUDS
- NO SCALE
- 3/16 3 SIDES
- 2" TYP
- PL 3/8
- EXP ANCHORS
- 1 1/2" TYP
- BY DECK MFNR

TYP METAL DECK DETAILS

- TYP METAL DECK SUPPORT AT COL
- NO SCALE
- 4. MULTIPLE OPENINGS PERP TO DECK SPAN CLOSER THAN MIN SPACING SHALL BE CONSIDERED A SINGLE OPENING AND REINFORCED PER 'TYPICAL OPENING' DETAIL.
- 1. PLACE SLEEVE ON DECK PRIOR TO CONCRETE PLACEMENT
- 2. CENTER BARS IN SLAB ABOVE METAL DECK
- 3. 2"Ø SLEEVES DO NOT REQUIRE TRIM STEEL (6" MIN SPACING)
- 4. MULTIPLE OPENINGS PERP TO DECK SPAN CLOSER THAN MIN SPACING SHALL BE CONSIDERED A SINGLE OPENING AND REINFORCED PER 'TYPICAL OPENING' DETAIL.
- 1. PLACE SLEEVE ON DECK PRIOR TO CONCRETE PLACEMENT
- 2. CENTER BARS IN SLAB ABOVE METAL DECK
- 3. 2"Ø SLEEVES DO NOT REQUIRE TRIM STEEL (6" MIN SPACING)
- 4. MULTIPLE OPENINGS PERP TO DECK SPAN CLOSER THAN MIN SPACING SHALL BE CONSIDERED A SINGLE OPENING AND REINFORCED PER 'TYPICAL OPENING' DETAIL.
STAIR 2 SOFFIT

1. Soffit framing does not attach to wall studs.
2. Provide tie sized to canister.
4. HSS wall framing by CFS contractor.

STAIR 2 EXTERIOR WALL HEAD

1. 6" x 6" wall framing by CFS contractor.
2. Brick veneer.
3. Unit slab framing by CFS contractor.
4. Site slab slab framing by CFS contractor.

STAIR 2 EXTERIOR WALL HEAD - 1

1. 6" x 6" wall framing by CFS contractor.
2. Brick veneer.
3. Unit slab framing by CFS contractor.
4. Site slab slab framing by CFS contractor.

STAIR 2 EXTERIOR WALL HEAD - 2

1. 6" x 6" wall framing by CFS contractor.
2. Brick veneer.
3. Unit slab framing by CFS contractor.
4. Site slab slab framing by CFS contractor.

STAIR 2 EXTERIOR WALL HEAD

1. 6" x 6" wall framing by CFS contractor.
2. Brick veneer.
3. Unit slab framing by CFS contractor.
4. Site slab slab framing by CFS contractor.

STAIR 2 SLAB EDGE AT CW

1. 6" x 6" wall framing by CFS contractor.
2. Brick veneer.
3. Unit slab framing by CFS contractor.
4. Site slab slab framing by CFS contractor.

EXTERIOR WALL AT EAST CURTAINWALL - 1

1. Exterior slab edge at CW connection to curtainwall.
2. Two sided only.
3. Curtainwall connection to mullion for supplier.

EXTERIOR WALL AT EAST CURTAINWALL - 2

1. Exterior slab edge at CW connection to curtainwall.
2. Two sided only.
3. Curtainwall connection to mullion for supplier.

COLUMNS

1. 2 1/2" columns.
2. 1/2" columns.
3. 3/16" columns.
4. 3/16" columns.

TYP OF SPANDELAT ROOF

1. TYP of spandrel at roof.
2. TYP of spandrel at roof.
3. TYP of spandrel at roof.
4. TYP of spandrel at roof.