Zak Mesyan Home Research Teaching


Infinite-dimensional diagonalization and semisimplicity (with M. C. Iovanov and M. L. Reyes), submitted. (arXiv)
Topological graph inverse semigroups (with J. D. Mitchell, M. Morayne, and Y. Peresse), submitted. (arXiv)


15. The structure of a graph inverse semigroup (with J. D. Mitchell), Semigroup Forum, to appear. (arXiv)
14. Traces on semigroup rings and Leavitt path algebras (with L. Vas), Glasgow Math. J., to appear. (arXiv)
13. Polynomials of small degree evaluated on matrices, Lin. Multilin. Alg. 61 (2013) 1487-1495. (arXiv)
12. Commutator Leavitt path algebras, Algebr. Represent. Theory 16 (2013) 1207-1232. (arXiv)
11. The Bergman-Shelah preorder on transformation semigroups (with J. D. Mitchell, M. Morayne, and Y. Peresse), Math. Logic Quart. 58 (2012) 424-433. (arXiv)
10. Monoids of injective maps closed under conjugation by permutations, Israel J. Math. 189 (2012) 287-305. (arXiv)
9. Simple Lie algebras arising from Leavitt path algebras (with G. Abrams), J. Pure Appl. Algebra 216 (2012) 2302-2313. (arXiv)
8. Groups where free subgroups are abundant, J. Algebra 344 (2011) 161-171. (arXiv)
7. Conjugation of injections by permutations, Semigroup Forum 81 (2010) 297-324. (arXiv)
6. The ideals of an ideal extension, J. Algebra Appl. 9 (2010) 407-431. (arXiv)
5. On minimal extensions of rings (with T. J. Dorsey), Comm. Algebra 37 (2009) 3463-3486. (arXiv)
4. Generating self-map monoids of infinite sets, Semigroup Forum 75 (2007) 648-675. (arXiv)
3. Endomorphism rings generated using small numbers of elements, Bull. London Math. Soc. 39 (2007) 290-300. (arXiv)
2. Commutator rings, Bull. Austral. Math. Soc. 74 (2006) 279-288. (arXiv)
1. Generating endomorphism rings of infinite direct sums and products of modules, J. Algebra 283 (2005) 364-366. (arXiv)

Profiles on Other Sites

Google Scholar
Mathematics Genealogy Project