## Research

o Radu C. Cascaval: "A Boussinesq model for pressure and flow velocity waves in arterial segments", to appear in Mathematics and Computers in Simulation, Vol 8(2012), No. 6, pp 1047–1055. Link

o Radu C. Cascaval and C. Travis Hunter: "Linear and nonlinear Schrödinger equations on simple networks", Libertas Mathematica, Vol 30 (2010), pp 85-98. PDF

o Jerry L. Bona, Radu C. Cascaval: "Nonlinear dispersive waves on trees", in Canadian Applied Mathematics Quarterly, Vol 16, (2008), No 1, pp 1- 18. PDF

o Radu C. Cascaval, Kethera A. Fogler, Gene D. Abrams, Robert L. Durham. "Evaluating the benefits of providing archived online lectures to in-class students enrolled in Math courses", in Journal of Asynchronous Learning Network, Vol 12, (2008), No 3.

o Radu C. Cascaval, Fritz Gesztesy. "J-self-adjointness of a class of Dirac-type operators", in J. Math. Anal. Appl.; Vol 294 (2004), pp 113-121. PDF

o Radu C. Cascaval, Fritz Gesztesy, Yuri Latushkin, Helge Holden. "Spectral analysis of Darboux transformations for the focusing NLS hierarchy", in Journal d'Analyse Mathematique, Vol 93 (2004), pp 139-198. PDF

o Radu C. Cascaval. "Local and global well-posedness for a class of nonlinear dispersive equations", in Advances in Differential Equations; Vol 9, Numbers 1/2 (2004), pp 85-132. PDF

o Radu C. Cascaval. "Variable coefficient Korteveg-de Vries equations and wave propagation in elastic tubes", in Evolution Equations, G. Goldstein et al. (ed.), Lecture Notes in Pure and Applied Math, Vol 234, Marcel Dekker 2003. PDF

o Radu C. Cascaval, Eugene C. Eckstein, Cicero L. Frota, Jerome A. Goldstein: “Fractional telegraph equations”, J. Math. Anal. Appl. 275 (2002), pp 145-159. PDF

o Radu C. Cascaval: “Global solutions for a class of dispersive equations”, in “Differential Equations and Control Theory”, S. Aizicovici, N. Pavel (ed.), Lecture Notes in Pure and Applied Math. 225, Marcel Dekker, 2001, pp 77–107.

o Radu C. Cascaval, Jerome A. Goldstein: “A semigroup approach to dispersive waves”, in “Evolution Equations and Their Applications in Physical and Life Sciences”, G. Lumer and L. Weis (ed.), Lecture Notes in Pure and Appl. Math. 215, Marcel Dekker, 2000, pp 225–234.

o Radu C Cascaval: ”Global Well-Posedness for a Class of Dispersive Equations”, Ph.D. Thesis, University of Memphis, 2000

o Radu C. Cascaval, Ioan I. Vrabie: “Periodic solutions for a class of nonlinear evolution equations”, Rev. Matematica Univ. Compl. Madrid 7 (1994), no. 2, pp 325–338

o Liviu I. Nicolaescu, Radu C. Cascaval: “Weaker characterization of the limit of a function at infinity”, Anal. St. Univ. “Al. I. Cuza” Iasi XXXVI (1990), no. 4, pp 319–328