Introduction to Linear Algebra - Math 313

 

Spring 2010

 

Homework

 

Class Date

Sections Covered

Homework Assigned

Homework
Due Date

W  January 20

1.1, 1.2

 

1.1:  3-5 Turn in 5b

1.2:  3-10, 12-14, 21, 32 Turn in 5cd, 6a, 7a, 8a, 10a,14b

 

 

January 25

 

M January 25

W January 27

1.3,1.4

1.5, 1.6,1.7

 

1.3: 5,7,10,11,17 Turn in 7ab

1.4:  4-8, 11, 13, 16, 20 Turn in 4ab, 7a, 8, 11

1.5: 5-7, 9, 10 Turn in 7c

 1.6: 1-5 , 16-19 Turn in 5, 18

1.7:  1-5,  Turn in 3b,4c,5b

 

M February 1

M February 1

 

 

W  February 3

 

2.1

 

 

2.2, 2.3

2.1 1-3, 5-10 Turn in 6,9

 

 

2.2: 1-12 Turn in 3b,4,5

2.3 4,12 Turn in: 4b, 12a

 

M  February 8

 

 

M  February 8

 

 

W February 10

 

 

 

 

 Review,

 

 

Quiz 1

 

 

M February 15  

 

 

W February 17

4.1,5.1

 

 5.2

 

 

5.1 1-16 Turn in 5,6,7,9,11Change instructions to: For those examples which ARE vector spaces, verify axioms 1 and 6

5.2 1-4, 6-9, 11-16, 21,22 Turn in 1bc, 3ab, and give five examples of specific vectors in 3b; Turn in 4be, 6acf, 8ac, 13, 14, 22

 

 

M February 22

M February 22

 

 

 

 

 

W February 24

5.3, 5.4

 

 

 

 

 

 

5.4

5.3 1-6, 9-14, 19,20
Turn in: 2bd, 4cd, 21cd
On 2bd, 4cd change instructions to: "Are these sets independent or dependent? If
independent, prove it. If dependent, give an appropriate equation."

5.4: 1-4, 7-10, 11-20 Turn in: 3ac, 4bc, 9a, 10b, 12, 18ac, 19bc,20.  In 19bc, 20 give a basis for the given subspace.

 

M March 1

M March 1

 

W March 3

 

 

5.5

 

 

5.6

 

 

 

 

5.5: 1-10 Turn in: 6ac, 8ac, 9ac, 10ac, 11

 

5.6:  2,4 Turn in: 2ac, 4abc
In 4abc, compute only the dimension of the row space, the column space, and the null space

 

 

 M March. 8

 

 

 

 

 

 

 M March 8

 

W March 10

Exam 1 REVIEW

 

EXAM 1

 M March 15

 

 

W March 17

 

 

 6.1, 6.2

 

 

6.3

 

 

6.1: 4, 10a, 11a, 12, 14, 17, 27, 28a

Turn in: 4, 12a, 14, 27, 28a (HINT: In 28a, use the product rule:

2Sin A.CosB = [Sin (A+B) + Sin(A-B)]

6.2: # 1,2,5,6,8,12, 34. Turn in: 1,2,5cf, 6a, 34 (In 34 change the instructions to : Show that f(x) = cos(x) and g(x) = cos(2x) are orthogonal with respect to this inner product .

6.3: # 1-5, 7, 9-12, 16, 17 Turn in: 9,10,11,12a, 16, 17a

 

M March. 29

M March 29

 

W March 31

 7.1

 

7.2

7.1:  # 1-6, 10 Turn in: 1bc, 2bc, 3bc, 4af, 6a

7.2: # 2-15, 18-20 Turn in: 5,9,10,13,18,20a

M April 5

M April 5

 

W April 7

 Quiz 2 REVIEW

 

Quiz -2

 

 

 

 

 

 

M April 12

W April 14

 

6.5

 

8.1

 

6.5: # 1-3, 6-9 Turn in: 1ab, 2a, 6,7



8.1 : # 1-3, 8,9,12,16,21,25,31 Turn in: 1, 9,12,25,31

M April. 19

M April 19

W April 21

 8.2

 

8.4

8.2: #1-15, 25,26,27 Turn in: 7ac, 8ac, 9ac, 11,25

8.4:#1-9,11,14-16,18,19 Turn in: 1, 4, 6, 18ac,  19a

M  April 26

 

 

 

 

 M April 26

 

W April 28

 

 

8.5

9.1

 

 

 

 

8.5: #1-6, 11-13  Turn in: 1, 3, 5, 6, 11(modified) 12a(modified)(In # 11 and 12a, Find the eigen values of T and the matrix P that diagonalizes the matrix [T] with respect to the standard basis)

 

 

M May. 3

M May   3

 

 

W  May 5

 

W Dec 12

(Note: Exam starts at 10:50 A.M.)

Exam 2 REVIEW

 

 

Exam 2 REVIEW

 

EXAM 2-Final Exam